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Outline

The axion and direct experimental searches

The CAST experiment

Towards a new generation axion helioscope : IAXO

Micromegas detectors. Detection principle, performances,
discrimination capabilities, technology development (bulk, microbulk,
resistive, piggyback), Underground Rare events, simulation and

characterization, high rate applications.

A large spherical TPC for axion searches.



A new Light 6oson ariging from QCD theory

QCD predicts violation of CP in gze—
strong interactions L, = Ga G
327°
Bad agreement between theoretical
and experimental values for the —0 <10 e-cm
electric dipole moment of neutron Why is 0 so small ?

d (theory) ~10'°e-cm
d (exp.)<6.3x10°e-cm

0 =6+ Arg(det M)
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The theory predicts one unique parameter
(scale factor) to describe the axion.

* Neutral pseudoscalar

* Practically stable

* Very low mass

* Very low cross-section

* Coupling to photons

Production - detection
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Mass depends on this parameter and it needs
to be determined experimentally.
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If the axion mass is small enough could contribute

Dark energy
(ChEnIItY LA

W)

to the content of Cold Dark Matter of the Universe.

Other
nonluminous
Dark matter components

{identity unknown) intergalactic gas 3.6%
238 nautrinos 0.1%
- supermassive BHs 0.04%

Luminous matter
stars and luminous gas 0.4%
radiation 0.005%




Direct Axion Detection Technigues (J7)

Bragg Difraction
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Microwave Cavity Searches

Superconducting Ultra-low noise
magnet microwave receiver

N

High-Q microwave cavity

e.g. Asztalos et al., Phys. Rev. D 69, 011101(2004)
[astro-ph/0310042]

Geomagnetic Axion
Conversion

The Sun The Earth

4-keV X-rays
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s
Telescope
B-field

Davoudiasl & Huber, hep-ph/0509293

Axions can convert to photons in
Earth’s magnetic field

Idea is to observe the Sun through
the Earth




Direct Axion Detection Technigues (JJ)

Laser experiments Telescope Searches

Vacuum properties

B!‘ﬂ Bi‘,l?
Y a
B E T E) E .
rofation
o
7
Ey E,
B{’.\T

before after

Bex ext | (\t/ .
T a v ’ ‘
B E o Bl
. Bex p == e.g. Grin et al. 2006 astro-ph/0611502v1

retardation of E, é/’ i .
Helioscope Searches

before

X-ray
detector

- - - - - - - — i o 3 > -
Flight time
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Lazarus et al. Phys. Rev. Lett. 69 2333 (1992)

Earth




The axion search roadmap
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The CERN Axion Solar Telegcope (CAST) Experiment

Idea : Axions would be produced in the Sun’s core and re-converted to x-rays inside an intense
magnetic field. P. Sikivie, phys. Rev. Lett. 51, 1415-1417 (1983)
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CAST is using a prototype superconducting LHC dipole magnet able to track the Sun for
about 1.5 hours during Sunrise and Sunset.

Operation at T=1.8 K, 1=13,000A, B=9T, L=9.26m
R Fa Expected signal
WO MICROMEGAS S g d ot - X-Ray excess during tracking
| % N Hid at 1-10 keV region

CAST sensitivity depends on
the detector background
0.3 counts/hour in 14.5 cm?

Sunrise side
_ One MICROMEGAS Detector AN :
+ CCD Detector o E 1010 GeV-1




The CAST experiment : Axion mass scanning principle

Conversion probability
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CAST
Phase |

(Vacuum)

CAST
Phase Il
(4He)

CAST
Phase Il
(3He)

ema<0.02eV
eCompleted(2003-2004)
*PRL94(2005)121301
*JCAP04(2007)020

eP< 13.4mbar, 160steps
¢(0.02<ma<0.39eV
eCompleted(2005-2006)
*JCAP02(2009)008

*P< 120 mbar
eCompleted(2007-2011)
¢0.39<ma<0.64 eV
Phys.Rev.Lett. 107 (2011)
261302
e0.64<ma<1.15eV
arXiv:1307.1985

g, (GeVv)

Latest results up to 1.15 eV
submitted for publication
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The CAST experiment : Micromegas Detectors

Remarkable improvement of Micromegas detectors inside CAST
experiment.

3 Micromegas ( ) installed in 3 of the 4
CAST magnet apertures.
Operating with Ar + 2% Isobutane at 1.45 bar

Readout 106x106 strips -> 6x6 cm2
Plus mesh temporal signal

Detectors installation in 2008 Sunset side detectors

Sunrise side detector




CAST detectors readout provides
temporal and spatial information of
the events.

Drift region

The temporal and spatial properties
of events are to do an efficient
selection of X-rays.

Amplification gap
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Micromegas : Background rejection capabilities.

6keV events from an >°Fe source are used for X-ray selection and background discrimination.

No cuts: Including only 1 xy-cluster events
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Micromegas : Multivariate analysis

Possibility to apply a multivariate analysis with the
parameters obtained with the readout.

Pulse shape, risetime, cluster size, number of clusters

X-ray events coming from a X-ray Fe55 source are
distributed around a ellipsoid centroid with a
given distribution.

X-ray events are confined
in a small volume at the

‘ parameter space.

0-2 B keV —
RN Software efficiency
015 ) fit —— 71  can be easily fixed by
setting the distance
0.1 I~
Rejection area limit.

0 5 "10 15 20 25

Multivariate distance

Standard multivariate method




Micromegas : Background rejection optimization

Good performance of Micromegas detectors during first years of operation
at CAST. Background could be reduced by improving detector technology and quality,
shielding and exploting discrimination capabilities.

Detector background depends on

Intrinsic detector radiation
Micromegas detectors can be built with
low radiative materials (Plexiglass, Kapton, Copper)

Our group in Univ. Zaragoza (Spain) prepared further investigations to proof the
background reduction limit achievable with these detectors.



A dedicated set-up at Zaragoza for 6ackground studies

New acquisition software completely based in
C++, ROOT, python and GNUPLOT.

Gas, Ar + 2% iso, flowing in open loop with
flow and pressure controlled

Shielding reproduces CAST configuration.

Faraday box prepared for automatic
calibrations with >°Fe source.

Slow control: temperature and
pressure and detector currents

Some modifications in electronics.
Fundamental modules are the same.

Nitrogen flux =30 - 50 I/h (for vol < 17 1)
Capacity for more than 2 weeks.




Bactground measurements at Canfranc Underground Laboratory

Canfranc Underground Lab (LSC) situated in the spanish
Pyrenees at the deep of 2500 m.w.e

» 10* reduction factor in cosmic muons
» Stable environmental conditions (T, P, humidity)
» Environmental gamma radiation well known.

CAST-like set-up and shielding
Installed underground Bl London
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Shiclding upgrade to investigate intringic detector 6ackground

Small cabling

Bricks ready to be passthrough hole

mounted.

Some members of
the crew proud of
the new heavy gift
just installed.

Crosschecking
electronic noise and
acquisition tuning



“Half” closed:
511/6 20 cm external Pb

Complete:
20cm
external Pb

CAST-like:
No external Pb
(but still 4n)

0,5cm Cu+2,5cm Pb
+ Nitrogen flux to avoid Rn

CYGNUS June 2011




Data taken at 3 different shielding configurations
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First approach to final background limited only by intrinsic radioactivity (from
microbulk, chamber materials, inner shielding):

< 2:107 counts keV- cm2 st [2-7 keV] (~1 count/day)

This result proves that background levels >20 times lower that current CAST
MM nominal background are possible via shielding improvement.
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International AXion Obgervatory (JAXO)

« Towards a new generation axion helioscope

« Conceptual Design Report and Letter of Intent ——
to CERN in preparation. (between coils)
about 0.5-1 m
« Goal: 1-1.5 orders of magnitude in sensitivity diameter

to g,, better than CAST

All bores equiped with
x-ray focusing and low
bkg detectors

Fully exploiting
innovations of CAST

First feasibility
results and

sensitivity prospects N\

recently published:

JCAP 1106:013,2011

(arxiv:1103.53347

New larger toroidal
magnet —
specifically built for

axion physics




JAXO sensitivity progpects
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Micromegas technologies

In first Micromegas detectors (conventional technology) mesh and read-out strips
were two independent entities. New technologies were developed to keep mesh and
strips in a single entity providing a fixed amplification gap.

Bulk Microbulk
30 um inox mesh 5 um copper mesh
128 um pillars 30 um mesh holes
Reacheable energy resolution 18% Pillars are replaced by attached
FWHM @ 6 keV Kapton substrate.
Spatial uniformity and very robust Reacheable energy resolution
Limit on energy resolution due to (<13% FWHM @ 6keV)

thickness of the mesh Good behaviour against sparks




Kapton foil (50um), both sides Cu-coated (5um) _

Construction of readout (strips/pads)

Added a single-side Cu-coated kapton foil (25/5)

Construction of one direction
readout lines

Vias construction by
etching the kapton

Construction of the second
direct readout lines and vias

Photochemical production of mesh holes

Kapton etching and cleaning
CYGNUS June 2011



Bulk micromegas fabrication process

The micro mesh consist of 18um pm thick stainless steel 400 Lpi woven microstrings. This micro
mesh is embedded between two photoimageable coverlay layers with a micron precision (to define

the amplification region) Read-out

board 4 layers
PCB

Laminated
photoimageable
coverlay

| B B B BN ENERNERNERRRRERR RN RNERNERERERNRERNENRENRNENRNRNERNERENRNENERNNERNNERNERNNERNENENENRNERNERNENNENNENNNNNNNERNNN] Stainless Steel

e e

Laminated
photoimageable
coverlay

ANEESESES IS E N NSNS SE E N E NN AN EEE NS NN NN RN EEEEEE RN EXpOSure +

development
+ cure + cut

Easy manufacturing - Large size compatible - Low cost
Robust and electrically testable at the production time

|. Giomataris et al, NIM A560 (2006) 405



New registive micromegas technologies

Micromegas started to use ressitive coatings to reduce the discharge weakness of
Non-resistive Micromegas.

Discharges in general have a negative effect on the detector by
* Increasing the dead time of the detector (field loss during few ms due to
charge loss recovery time)
* Damaging the electronics due to the high intensity currents.
* Damaging the detector itself by melting electrodes.

Resistive bulk Piggyback (ceramic-resistive micromegas)
An insulating layer is placed on top Micromegas are bulk-ed in a ceramic substrate
read-out strips, then high resistive with a resistive coating.
strips are placed on top. Read-out independent from detector.
Also for large area applications etied ot

Bulk Mesh <— Pillars
u es
\ . . . .
e enesesesesesemes e enemes Ceramic (High permittivity) R]::;léh; e layer
128 um Boundary resistor ( 2
Read-out independent from detector
Y readout

X readout

Signal transmission through capacitive coupling, high
ceramic permittivity



Micromegas in other experiments

COMPASS
40x40 cm? Micromegas |

BN CLAS12G




The New Small Wheel upgrade for the HL-LHC

NSW ATLAS Performance requirements

i Forwart lorimeter.
Solenoid orward Calorimeters

End Cap Toroid

Rate capability: 10 kHz/cm?
= Spatial resolution: 60 pum/track segment

Angular resolution: 0.3 mrad/segment

Good double track resolution

NSNS

* Trigger capability: BCID (angle = 1 mrad)
Efficiency: ‘at least as good as now’ v

Radiation resistance: tbd (V)
Good ageing properties: tbd (V')

Barrel Toroid Inner Detector Shielding

NSW meeting, 06/10/2011 Joerg Wotschack (CERN) 11

" Micromegas detector

[ V4

Total area of
micromegas detectors
required

1200m?

Large area due to
multilayer micromegas
will be implemented
in each sector.




Regsitive Micromegas Ageing tests

X-ray beam

Cold neutron beam Alpha source

A resistive prototype detector is exposed to different radiation
natures.

Gain control measurements are performed before and after each
exposure.

After the ageing both detectors are taken to the H6 CERN-SPS
pion beam line.

The goal to accumulate an integrated operation charge
equivalent to the one would be obtained at the HL-LHC for 10
years for each type of radiation.



Neutron irradiation: Orplice reactor

High intensity thermal neutron irradiation had place at C.E.A. Orphee reactor.

Several neutron research lines
available.

Detector
emplacement
at Orphee reactor
Neutron guide

T T R
oy

~G11 | __I

Neutron flux : ~8.108 n/cm2/sec

Neutron energy : 5to 10 meV

=
=
=

fy Eo T -

Neutron News, Taylor & Francis, Vol. 22, Issue 4, ‘
Oct/Nov/Dec. 2011, pp. 10-31 1

Z 2unbig
]
H
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Neutron irradiation: Megh current Gistory
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Neutron flux at the level of CSC in ATLAS ~3.10% neutrons/cm2/s

10 years at HL-LHC (=> x10.107 sec) with a security
factor : x3

At the HL-LHC, we will accumulate 1,5.1013 n/cm?2
At Orphee we have ~8.1078 n/cm2/sec so in 1 hour

we have : 8.108 x 3600 ~ 3.1012 n/cm2/hour which is
about 2 HL-LHC years (200 days year).
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Pion Geam measurements after ageing

The two R17 prototypes were
taken to the H6 SPS CERN pion
beam to perform a comparative
study between both prototypes,
irradiated and non-irradiated

one.

The performance was evaluated
in terms of spatial resolution (SR)

and efficiency.

Simplified beam set-up with R17 detectors
Detectors long offset produces systematics due to pion scattering.
Resistive detectors were considered for track reconstruction. Non final

set-up for intrinsic SR determination.
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im
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20cm

=

Residual distribution and alignment of resistive R17 prototypes to reference chambers
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A low energy threshold detector. Spherical Geometry.

lhin end

w:ndq'..v - 1”‘~. 7

Micromegas GEM

E= constant
C=S>1nF

Cylindrical Proportional Counter

E=V/In(b/a)r L =lengthand

=
| //

| _—

o Cathode j
/\ Spherical Proportional Counter

a=radius of the wire, b = tube radius

i C =2xL/In(b/a)>> 10 pF

E=1/r>
=~V/R, close to the ball
C=R,,< 1pF
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Sphicrical TPC advantages

« Simple and cheap

 Large volume
* single read-out

* Robustness

» Good energy resolution

» Low energy threshold

 Efficient fiducial cut

*High dinamic range

ﬁlS mm

E
\ C=R;,=75 mm £ .1pF

E=A/R?

\

\_/

I. Giomataris

Good capability for
particle recognition

P VS s s
f Ly C
| i
/ Alpha - \
] partlcle
|

Great flexibility (P, gaz)
Allows to play with parameters used
for discrimination and background

Long drift times (few hundred of
microseconds).
Fiducial selection by risetime

World record with TPC (C peak @270eV)

Counts

A Novel large-volume Spherical Detector with Proportional Amplification read-out, 1.

Giomataris et al., JINST 3:P09007,2008
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Detector set-up and calibration

Home made Ar-37 source: irradiating
Ca-40 powder with fast neutrons
7x10%neutrons/s

Existing spheres running in ground and
undergraound laboratories

2 LEP cavity 130cm @
1 low activity 60 cm @ in operation @ LSM

Irradiation time 14 days. Ar-37 emits
K(2.6 keV) and L(260 eV) X-rays (35 d

e-signal-sphere vs ampl-signal-sphere (2) ampl-signal-sphere

SEDINE set-up at Modane (LSM) 30 cm
sphere
Underground
Radiopure copper sphere
10-15 cm lead
25 cm poliethilene
Purified air (Radon free)




Detector construction and ingtallation at [SM (France)

. Giomatar



Motivation and gengitivity to KK-axions

_ Axign density |
3 3 8 & 3

Gravitationally trapped massive Axion (like) particles decays

L. Di Lella, K. Zioutas, Astropart. Phys. 19 (2003) 145 To < Tq
2
(gay = 9.2 x 1074 GeV ™) ““‘?; Pa = 1.18 X 10% ( gm-l) [m_g]
A “* T Low kinetic energy GeV
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> 13,,.—3 3 g m
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Our sensitivity only 2-prong events contribution
1¥10~-11
Spherical TPC allows to perform a search

for this kind of particles. Large volume,

low energy threshold, good rejection 1410712
_— — e E 1 day
capabilities. 2 7 days
_ ) 1 month
KK-axions tower of mass states = s " & months
! ~ X-ray hint
08— Expected X-ray ° 110713 %
0.04f @ X . . . -
distribution
0.03 F+¢
. due to decay
dependency 1¥10~-14 ' ' '
i : 0.3 1 3 10 30
T S with the mass :
0 5 10 15 20 Axion mass [keV]

KK-axion mass [keV]



Detecting 2-prong events

Digitisation @ 1 MHz, soft trigger
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2-prong events oliserved from a 56Fe source in Argon

Full Spectrum without cuts (Cosmics + Fe55 peak)

integral {integral < 20000}

30000

25000
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15000

10000

5000

Ar + 2%CH4

integral

Enhancement for decay
search we only need VOLUME

htemp
Entries 437
Mean 5950
RMS 1872

Doubles
Energy within 5%

FEmAREn, |\, | |
12000 14000 16000
integral

bkeV

htemp
Entries 659173
Mean 8844
RMS 5152
Fe535 run at
P =100 mbar

100

80
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40

Only doubles spectra

inegral {rmiss « 160 & risedme = & &l risetime < 50 &8 nibax == 2 88 nbdaxD == 2 && decay < 207 &4 integral = 20000}

hiemp
Entries 1728
Mean 5212
RMS 2799

Doubles
selection
finds 3keV-3keV
events

integral

Very low background rates for doubles

events even at ground level

i 05 88 it

1keV

htemnp

Entries
Mean
RMS

1 day data

L
0
integral

keV




Background discrimination [SM 500 mbar Ar+2%CH4%

riseSlopefintegral

0.02

0.015 ¥

0.01

riseSlope/fintegral

0.005

0.02
0.015 f
0.01

0.005

Copper

| All the events

T T
e

riseSlope/integral

15
Energy [keV]

0.015

0.005

Riseslope depends
strongly on the
distance to the
sensor, due to
diffusion.

Enhances for

selection of a fiducial
volume

Pure double events

Counts

Counts

Very low background for 2-prong events
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i Volume. |
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Pulse shape -
filtering
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Optimum pressure including diffusion

Great flexibility in gas mixture and pressure

Too close events (< 5us)

Probability [us™-1]

Efficiency

0.01
0.009

Drift time difference between 2 gammas

Non-separable gammas
D ———

Double det.
At low E
Requires

Cutoff to enhance \
background rejection
250 mbar N
100 mbar

50 mbar ——

Low P

Doubles (No diff) —e—
Doubles (Diff) —&—

150
Time delay [us]
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Doubles reduction
due to diffusion

E = 0-2 keV |

Singles increase due to diffusion

<" 35 mbar

PO P

100 200 300 400 500

Presure [mbar]

600 700 800 900 1000

Pressure changes are equivalent to switch OFF/ON the signal!!
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T E=4-6keV |

Doubles reduction due to diffusion B
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Efficiency

Efficiency

Doubles efficiency @1bar

100 mbar (No diff) ——
1000 mbar (No diff) =—

100 mbar /=3
1000 mbar =2

__\L\! I I

15 20 25

Axion mass [keV]
Play with pressure to get a
smoother energy scan
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35 mbar C—— 100 mbar C—3 350 mbar —— 1000 mbar C—3

30

25
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Axion mass [keV]
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g_ag [GeV™-1]

A tentative long data run scanning

At 4 different pressures

30 days each pressure 6.5 m

Our sensitivity only doubles contribution
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Axion Roadmap
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Axion Roadmap
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A dedicated supernova detector
Simple and cost effective - Life time >> 1 century

Through neutrino-nucleus coherent elastic scattering
Y. Giomataris, J. D. Vergados, Phys.Lett.B634:23-29,2006

Sensitivity for galactic explosion
For p=10 Atm, R=2m, D=10 kpc, U,=0.5x10°3ergs

# Number of events (no quenching, zero threshold)
He Ne Ar Kr Xe Xe (with Nuc. FF)

16 3.95 19.1 76.8 235 179

# Number of events (after quenching, E,;, =0.25 keV)
He Ne Ar Kr Xe Xe (with Nuc. F.F)

0.08 1.5 6.7 23.8 68.1 51.8

Idea : A world wide network of several (tenths or
hundreds) of such dedicated Supernova detectors

h I robust, low cost, simple (one channel)
B FOCHOCHIRE To be managed by an international scientific

« 105 ergs of energy released consortium and operated by students

Destruction of massive star initiated by

* 99% carried by neutrinos

« Afew happen every century in our
Galaxy, but the last one observed was
over 300 years ago



Dark matter search through very low energy threshold < 100 eV

Sub-keV Background Measure 100

CoGeNT 2010
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BUT, DAI\/IA and COGENT clalm rejected?

10" -39

. Light Dark Matter candidates
- = Light scalars or fermions (Fayet, Boehm&Fayet;

1041

= Kaluza-Klein Axion like

III|,|,|,| [T

P
%rlectron Interacting dark matter

= Secluded WIMP dark matter (Arkani-Hamed,
= Pospelov, Ritz, Voloshin)

‘WIMP-Nucleon Cross Section [cm?]
=
5

XENONI100 (2011)

g 101 Our SenSItIVIty Wlth H target o Needs SUb-keV ener thresho|d
s i ™ | 1079 | -
b 0.01 eV threshold
vee 0,001 — )
g 10-2 < ’:::: E 1Er
o > wo el
o o E
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§ 10 O b - -”:'-!lil L
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2 108}
2 10*
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E S AP, . I ol o1 1 10 100 1000 04
10° 10 10" E.' lev
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A. Dedes, I. Giomataris,, K. Suxho, J.D. Vergados, Nucl.Phys.B826:148-
173,2010



Micromegas concept

\ drift electrode

particles

HV,

Micromegas New Small Wheel Sector

Conversion gap

3mm

HV2

Amplification gap

N Readout strip

*Each detector comprises eight active layers,
arranged in two multilayers.

*The basic detector unit is an assembly of four
layers that form a stiff multilayer.

*The individual layers should be arranged in two
doublets in which the Micromegas are mounted
back-to-back

*The flat surfaces of all layers should be parallel to
within 40—-60 um and the strips in all layers must
be parallel with the same precision.

stiffening panel or integrated

Drift electrode, can be separate from
[ Flat surface
\ "

< 80 mm

Stiffening panel with drift electrode//

JaAe|nninw

'\ =

\_ Flat surface Outer panels need to support gas

pressure (< 5mbar), deformation
up to 0.5 mm tolerable



Some experiments using = ATLAS-SLLHC
Bulk Micromegas e




ndustrialization Is going on
ATLAS large chambers o.qn cirea. LTOS,
_Triangle Labs (US)
1 x 1 m? micromegas
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1x1 nﬁzdreadout board composed of 2 boa rd§ of 05 X1 m?
2048 strips of 1.06 m length with a pitch of 0.45 mm

Drift electrode and mesh panel (top) and
detail showing the O-ring as gas seal
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~ ILC TPC with Micromegas,
L=46m,D=34m

lon feed back supression |

10"

—— 58 um pitch 't
; —— 45 um pitch
il —— 32um pitch
e .
gy —— 20 um pitch
i
=5 ;¢ = o k&
. i 2]
N
10° FR=EJE,

ILC TPC prototype
with Micromegas

Event in DESY test beam

No ExB effect

(Sum[Ai]_700ns)

B =5T

~40 um average!!

0.1
oos - Pad size 2x6 mm
0.06} | | |
0.04; e v
0.02
24 6 & 10 iz 1476

TPC requirements

gain < 1500

lon suppression
Large surface
Good uniformity



MIMAC-He3 Micro-tpc Matrix of Chambers of
He3

WIMP directional TPC, I\/Iicromegas read-out,
Gremble Saclay,.Cada ollaboratlon

Quen rf'ﬁnon ?5%'thr' lr\'nSeTa‘éL(Jzoorﬂen]tlo _

-

|cromegas uTPC chamber

Direct QF evaluation

D. Santos et al., [arXiv:0810. 1137] |

t “He with a total
kinetic energy of 1.5keV
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R17 ageing detector prototypes beam tests history

Beam tests took place at the end of October 2012. During two weeks R17 detectors took data.
Three different zones were irradiated. And different settings were taken at each of these beam
exposed regions.

resolution [um] resolution [um] resolution [um] resolution [um] resolution [um] resolution [um]

Spatial resolution history for the different runs taken during this period.
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Rejection power

Using Cd-109 source — December 2009
Irradiate gas through 200pum Al window

P =100 mb, Ar-CH, (2%)
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Cu ~ 8 keV
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Cd ~ 22 keV

If it ~0.0155 ms === R = 65 cm
0.014 ms ==> ~70% of signal

Rise time cut

Elle Edit Miew Qptiohs |nspact ==

Eile Eqif ¥iews OQpliong  Inspect i
Fiat rrigelsian] 240

hamplcuts

No-Cuts

Wb lee e bee s Lovsa e bapraligaaliig
1] 100 000 I000 4000 5000 EDODN  TINED
200 L 1 [P PR TR ETE T PR T FREe |
0 1300 000 3000 4000 SDOD SO0 FOOD
AmnilLide |ADC)
Eila  Edit Yiaw Dpllors [hepact  Clagaes Halp Bl Et Pee Qpterm [especl Qs Hul
[nampicutsa | — | eulal] P
Craen I | e L
Hasn aseT S T
[ H] i ?" 1M
- 2" el LA 500 ¢ 1 Ll [T
] 6 = 0 u L1797 & DT
n 1804 1 0 as n L8351 Q.BEE
B0 s i - T g L BT
] ErEErT a00l- o 34034 T8
H Cra k) ] LY P
el

[ =P T AT F R T AT FETEE TR P
-] 1000 200 3000 000 S050 S000  FO00

Efficiency of the cut in it ==> ~ 70% signal (Cd peak)
Severe background reduction

Energy resolution ~ 6 % and 9 % for Cu and Cd




Ultra low energy threshold observed
arXiv:1010.4132 [physics.ins-det], 2010
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